ΠΡΟΤΑΣΗ ΓΙΑ ΘΕMA ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

1. Ονοματεπώνυμο μέλους ΔΕΠ που υποβάλλει την πρόταση: Ζωή Δουλγέρη

2. Θέμα: Ακρίβεια παρακολούθησης τροχιάς για συνεργατικά ρομπότ σε αβεβαιο δυναμικό περιβάλλον.

3. Περιγραφή (Συνοπτική περιγραφή της κατάστασης της επιστήμης και της αναμενόμενης συμβολής):

Η ενσωμάτωση συνεργατικών ρομποτικών συστημάτων στην βιομηχανία προϋποθέτει την ανάπτυξη μεθόδων που θα εξασφαλίζουν τόσο την ασφάλεια όσο και την ακρίβεια εκτέλεσης των δράσεων που αναλαμβάνει το ρομπότ σε ένα δυναμικό περιβάλλον συνύπαρξης και συνεργασίας με τον άνθρωπο που χαρακτηρίζεται από αβεβαιοτήτες.

Οι τεχνικές προδιαγραφές για την εκτίμηση κινδύνου σε βιομηχανικές εφαρμογές είναι ήδη διαθέσιμες στην βιβλιογραφία και περιλαμβάνουν περιφερειακούς ως προς την ταχύτητα κίνησης του ρομποτικού συστήματος καθώς επίσης και ως προς τις δυνάμεις που ασκεί το ρομποτικό σύστημα στην περίπτωση επαφής ή σύγκρουσης με τον άνθρωπο ή το περιβάλλον του. Προς τον σκοπό αυτό τα συνεργατικά ρομπότ είναι ενεργώς υποχρωτικά σε εξωτερικές δυνάμεις επαφής με αποτέλεσμα να επιτεθούν ως προς την ακρίβεια εκτέλεσης εργασιών που χαρακτηρίζονται από αβεβαια φορτία ή άλλες διαταραχές που οφείλονται σε αβεβαιοτήτες μοντέλου (τριβή, μη μοντέλοποιημένα χαρακτηριστικά της δυναμικής του ρομποτικού συστήματος κοκ). Παράλληλα, η σύγχρονη χρήση ρομποτικών συστημάτων σε δυναμικά και αβεβαία περιβάλλονα χαρακτηρίζεται από την εκμάθηση, γενικευση και παραγωγή σύνθετων κινηματικών και δυναμικών συμπεριφορών που επιδεικνύονται από τον άνθρωπο αντικαθιστώντας τον παραδοσιακό προγραμματισμό και τον σχεδιασμό τροχιάς.

Στην παρούσα διατριβή θα μελετηθούν σχήματα ελέγχου ρομποτικών συστημάτων τα οποία επιτυγχάνουν ακρίβεια παρακολούθησης τροχιών αναφοράς που δημιουργούνται σε πραγματικό χρόνο για ενεργώς υποχρωτικά ρομπότ ώστε να εξασφαλίζονται οι προδιαγραφές ασφάλειας σε περίπτωση επαφής για μια ποικιλία εφαρμογών βιομηχανικού ενδιαφέροντος όπως η συναρμολόγηση, κατεργασίες, διαλογή, τοποθέτηση προϊόντων κλπ. Προβλέπεται η χρήση της ανάλυσης συστηλής για την μελέτη της ευστάθειας του μη γραμμικού συστήματος ελέγχου.

4. Δυνατότητα χρηματοδότησης: ΝΑΙ από Ευρωπαϊκά προγράμματα τουλάχιστον για 1 χρόνο.

5. Πιθανά μαθήματα που θα χρειαστεί να παρακολουθήσει ο/η υποψήφιος/α από τον κατάλογο μαθημάτων του ΜΠΣ του ΤΗΜΜΥ Α.Π.Θ.:

ΜΠ18: Ειδικά κεφάλαια ρομποτικών συστημάτων
ΜΠ19: Προηγμένα θέματα Αυτομάτου Ελέγχου
ΠΡΟΤΑΣΗ ΓΙΑ ΘΕΜΑ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

1. Ονοματεπώνυμο μέλους ΔΕΠ που υποβάλλει την πρόταση:
Γιάννης Παπαευσταθίου

2. Θέμα:
Ανάπτυξη προηγμένων συστημάτων Βαθιάς Μηχανικής Μάθησης (Deep Learning) σε ετερογενή συστήματα αποτελούμενα από CPUs, AI Accelerators και FPGAs χρησιμοποιώντας προηγμένα εργαλεία ανάπτυξης λογισμικού και υλικού

3. Περιγραφή (Συνοπτική περιγραφή της κατάστασης της επιστήμης και της αναμενόμενης συμβολής):

Εχει αποδειχθεί ότι οι AI Accelerators και τα κυκλώματα FPGAs υλοποιούν αλγορίθμους μηχανικής μάθησης (training και inference) όλων των μορφών (Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) και Deep Neural Networks (DNNs)) από 10 έως 150 φορές πιο γρήγορα και αποδοτικά σε σύγκριση με τα πλέον προηγμένα επεξεργαστικά συστήματα ειδικά για μη επανδρωμένα αεροσκάφη. Στα πλαίσια αυτού του διδακτορικού θα υλοποιηθούν προηγμένοι αλγόριθμοι για βαθιά μηχανική μάθηση (Deep Learning) σε ετερογενή παράλληλα συστήματα που αποτελούνται από προηγμένες CPUs, AI Accelerators και FPGAs, χρησιμοποιώντας ιδιαίτερα προηγμένα εργαλεία ανάπτυξης τέτοιων συστημάτων.

4. Δυνατότητα χρηματοδότησης: Ναι, εγγυημένη για 30 μήνες

5. Πιθανά μαθήματα που θα χρειαστεί να παρακολουθήσει ο/η υποψήφιος/α από τον κατάλογο μαθήματων του Μεταπτυχιακού Προγράμματος Σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Α.Π.Θ.:
Οχι
ΠΡΟΤΑΣΗ ΓΙΑ ΘΕΜΑ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

1. Ονοματεπώνυμο μέλους ΔΕΠ που υποβάλλει την πρόταση:
Γιάννης Παπαευσταθίου

2. Θέμα:
Υλοποίηση συστημάτων που θα χρησιμοποιούν την τεχνολογία block-chain για περιβαλλοντολογικές εφαρμογές

3. Περιγραφή (Συνοπτική περιγραφή της κατάστασης της επιστήμης και της αναμενόμενης συμβολής):

A system which will incorporate several environmental sensors placed in houses, cars, bicycles, backpacks and a Dapp based on which the citizens will be rewarded for providing their input will be developed. Moreover, the designed system will support storing and trading the citizens’ location so as to get the relevant rewards. The designed system will include the data storage structure, the selection and further development of the BC basic infrastructure and the development of the Smart Contracts and Tokenization Model. The developed BC-based system will allow collaborative data storage for the cities and their citizens, but can be also open to other cities, providing traceability, trust, comparability and the possibility to create a system that incentivizes positive actions. More specifically the designed system will integrate different kinds of data (e.g. citizens’ locations and citizens’ decisions) from different sources (e.g., human-entered or machine-made and it will compile a complete indexed history of the decisions, habits and locations of the citizens, the air pollution and CO2 information provided, while it will also be able to collect automatically data from devices like sensors/smartwatches/mobile-phones given the correct permissions; thus the platform will be able to handle both human-entered data, as well as data coming from smart-systems. Finally, it will validate and securely store every relevant transaction/change submitted/collected from both the citizens and the city municipalities. The involved citizens will have full access to the data collected by them and/or their devices while they will be able to assign access permissions or authorize municipality institutions to write and interpret data. Furthermore, the implemented DApp will allow citizens to collaborate in strategic data collections with the purpose of increasing the level and granularity of data and incentivize consciousness and active participation of citizens in the common objective of pollution reduction. In more details, the Dapps will consist of three parts: a) the smart contract (template) b) the frontend, and c) the backend system. The smart contract will deal with the following: a) identification of the entities involved (e.g. contract owner, users, smartphones, sensor devices), and the roles and types of interactions between them, b) modelling the entity attributes and interactions between them as state variables and functions, c) capturing the dependencies and constraints. The Dapp will be deployed on a central server which may for example be a full Ethereum node (or a node which can communicate with an Ethereum node). The Dapp logic will be controlled by the associated smart contracts and they will use a decentralized messaging protocol such as Whisper for communication as well as decentralized storage platforms such as Swarm for static storage (if for example Ethereum is selected in the specification task).

4. Δυνατότητα χρηματοδότησης: Ναι, εγγυημένη για 30 μήνες

5. Πιθανά μαθήματα που θα χρειαστεί να παρακολουθήσει η υποψήφιος/α από τον κατάλογο μαθημάτων του Μεταπτυχιακού Προγράμματος Σπουδών του Τμήματος Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Α.Π.Θ.:

Οχι